Miniature Type LM Guide® Models RSR/RSR-W

Structure and Features

With models RSR and RSR-W, balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Balls circulate in a compact structure and perform infinite linear motion with no limit in stroke. The LM block is designed to have a shape with high rigidity in a limited space, and in combination with large-diameter balls, demonstrates high rigidity in all directions.

Ultra compact

The absence of cage displacement, a problem that cross-roller guides and types of ball slides with limited stroke tend to cause, make these models highly reliable LM systems.

Capable of receiving loads in all directions

These models are capable of receiving loads in all directions, and a single-rail guide can adequately operate under a small moment load. Model RSR-W, in particular, has a greater number of effective balls and a broader LM rail to increase its rigidity against a moment. Thus, it achieves a more compact structure and more durable linear motion than a pair of linear bushes in parallel use.

Stainless steel type also available

A special type whose LM block, LM rail and balls are made of stainless steel is also available.

Types and Features

Models RSR/RSR-K/RSR-V

These models are standard types.

Models RSR-W/WV

It has a longer overall LM block length (L), a broader width (W) and greater rated load and permissible moment than standard types.

Model RSR-N

It has a longer overall LM block length (L) and a greater rated load than standard types.

Model RSR-WN

It has a longer overall LM block length (L), a greater rated load than standard types. Achieves the greatest load capacity among the miniature type LM Guide models.

Comparison of Model RSR-W with Other Model Numbers

Locations where a Pair of Linear Bushes Are Used

- •Unlike the linear bushes, model RSR-W can be used in a single-rail configuration and allows space saving.
- •Since model RSR-W has more load-bearing balls per row and wider LM block and LM rail, thus to achieve high rigidity against an overhung load.
- Accuracy can be achieved simply by mounting the LM rail using bolts. Therefore, the assembly time can be shortened.

Locations where a Cross-roller Table Is Used

- Does not show cage displacement even with vertical mount, and capable of performing infinite linear motion.
- •Eliminates the need for difficult clearance adjustment and achieves long-term, smooth motion over a long period of time.
- •Since the LM block width is large, the model can be used as a miniature table without any modification.

Example of comparing model RSR9WV with model VRM1035 in use

Rated Loads in All Directions

Model RSR is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

The basic load ratings of models RSR3 to 9 are uniform in the four directions (radial, reverse-radial and lateral directions), and their actual values are provided in the dimensional table for RSR.

The basic load ratings of models RSR12 to 20 indicate the values in the radial direction in Fig. 4, and their actual values are provided in the dimensional table for RSR. The values in the reverse-radial and lateral directions are obtained from table 1.

Table 1 Basic Load Ratings of Models RSR12 to 20 in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	Co
Reverse-radial direction	C∟=0.78C	Col=0.70Co
Lateral direction	CT=0.78C	Cot=0.71Co

Equivalent Load

When the LM block of models RSR3 to 9 receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}} \left(\mathbf{P}_{\mathrm{L}} \right) + \mathbf{P}_{\mathrm{T}}$

where

P⊧	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Lateral direction 	
\mathbf{P}_{R}	Radial load	(N)
P∟	Reverse-radial load	(N)
PT	:Lateral load	(N)

When the LM block of model RSR12 to 20 receives loads in the radial and lateral directions, or the reverse-radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{R}} (\mathbf{P}_{\mathrm{L}}) + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$

WINCIE						
PE	:Equivalent load					
	 Radial direction 					
	 Reverse-radial direction 					
	 Lateral direction 					
Pr	Radial load	(N)				
P∟	Reverse-radial load	(N)				
Ρ	:Lateral load	(N)				
V/V avoc	· Equivalant factor (cap tables 2 a	d O/				

X/Y axes : Equivalent factor (see tables 2 and 3)

Table 2 Equivalent Factor of Models RSR12 to 20 (When radial and lateral loads are applied)

PE	Х	Y
Equivalent load in radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table 3 Equivalent Factor of Models RSR12 to 20 (When reverse-radial and lateral loads are applied)

PE	Х	Y
Equivalent load in radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

a-411

Options

Dust Prevention Accessories

 \mathbb{THK} offers an end seal for model RSR as a dust prevention accessory. (For details of the end seal, see page a-24.)

Table 4 Symbol of Dust Prevention Accessory for Model RSR

Symbol		Dust prevention accessory
UU	With end seal	

Seal resistance value

For the maximum seal resistance value per LM block when a lubricant is applied on seals RSR…UU, refer to the corresponding value provided in table 5. Table 5 Maximum Seal Resistance Value of Seals RSR…UU

	Unit: N
Model No.	Seal resistance value
RSR 5	0.06
RSR 7	0.08
RSR 9	0.1
RSR 12	0.4
RSR 15	0.8
RSR 20	1.0
RSR 3W	0.2
RSR 5W	0.3
RSR 7W	0.4
RSR 9W	0.8
RSR 12W	1.1
RSR 15W	1.3

Dedicated Cap C for LM Rail Mounting Holes

If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign matter, they may enter the LM block structure. Entrance of such foreign matter can be prevented by covering each LM rail mounting hole with the dedicated cap so that the top of the mounting holes is on the same level as the LM rail top face.

Since the dedicated cap C for LM rail mounting holes uses a special synthetic resin with high oil resistance and high wear resistance, it is highly durable.

When placing an order, specify the desired cap type with the corresponding cap number indicated in table 6.

For the procedure for mounting the cap, see page a-22.

Table 6 Major Dimensions of Dedicated Cap C

Model	Cap C	Bolt	Major dimensions mm			
No.	model No.	used	D	Н		
RSR 9W	C3	M3	6.3	1.2		
RSR 12	C3	M3	6.3	1.2		
RSR 15	C3	M3	6.3	1.2		
RSR 20	C5	M5	9.8	2.4		

a 413 Miniature Type LM Guide Models RSR/RSR-W

QZ Lubricator

When QZ Lubricator is required, specify the desired type with the corresponding symbol indicated in table 7 (for details of QZ Lubricator, see pages a-19 and a-20).

For supported LM Guide model numbers for QZ Lubricator and overall LM block length with QZ Lubricator attached (dimension L), see page a-422.

Table 7 Parts Symbol for Model RSR with QZ Lubricator Attached

Symbol	Dust prevention accessories for LM Guide with QZ Lubricator attached
QZUU	With end seal + QZ

Stopper

With miniature LM Guide models RSR/RSR-W, balls will fall off if the LM block is removed from the LM rail.

To prevent the LM block from being pulled out, end pieces are mounted before shipment. If removing the stopper when using the LM Guide, be sure that the LM block will not overrun.

Table 8 Dimensional Table for Stopper (Type C) for Model RSR

		Unit: mm		
Model No.	А	В	С	
RSR 7	11	5	7.7	
RSR 9	13	6	9.5	
RSR 12	16	7	12.5	
RSR 15	19	7	14.5	
RSR 20	25	7	20.0	
RSR 7W	18	6	8.2	
RSR 9W	23	7	11.5	
RSR 12W	29	7	13.5	
RSR 15W	46	7	14.5	

Note: The stopper for models RSR3M/N, 5M/N and 5W uses an O-ring, while that for model RSR3W uses a silicone tube.

Fig. 5 Stopper (Type C) for Model RSR

Accuracy of the Mounting Surface

Model RSR uses Gothic arch grooves in the ball raceways. When two rails of RSR are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Section 7.3 "Permissible Error of the Mounting Surface" on page a-62.

When using this model in locations where it is difficult to obtain satisfactory accuracy of the mounting surface, we recommend using types RSR···A (semi standard) whose ball raceways have circular-arc grooves (avoid using these types in a single-rail configuration).

For specific accuracy of the mounting surface for types RSR...A, see Section 7.3 "Permissible Error of the Mounting Surface" on page a-62.

Standard Length and Maximum Length of the LM Rail

Table 9 shows the standard lengths and the maximum lengths of model RSR variations.

Table 9 Standard Length and Maximum Length of the LM Rail for Model RSR/RSR-W Unit: mm

Model No.	RSR 3	RSR 5	RSR 7	RSR 9	RSR 12	RSR 15	RSR 20	RSR 3W	RSR 5W	RSR 7W	RSR 9W	RSR 12W	RSR 15W
Standard LM rail length (L $_{\rm O}$	30 40 60 80 100	40 55 70 100 130 160	40 55 70 85 100 130	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 230 270 310 350 390 430 470 550 670 870	220 280 340 460 640 880 1000	40 55 70	50 70 90 110 130 150 170	50 80 110 140 200 260 290	50 80 110 140 200 260 290 320	70 110 150 230 270 310 390 470 550	110 150 190 230 310 430 550 670 790
Standard pitch F	10	15	15	20	25	40	60	15	20	30	30	40	40
G	5	5	5	7.5	10	15	20	5	5	10	10	15	15
Max length	200	200	300	1000	1340	1430	1800	100	200	400	1000	1430	1800

Note 1: The maximum length varies with accuracy grades. Contact $\ensuremath{\,\mbox{\sc tr}}\xspace{\sc tr}\xspace{\sc tr}\xspacee{\sc tr}\xspace{\sc tr}\xspace{\sc tr}\xspace{\sc tr}\x$

Note 2: The LM rail mounting hole of model RSR3 is an M1.6 through hole.

Model RSR5M

Model BSB5N

																					ιι	Jnit: mm
	LM block dimensions								LM rail dimensions					Basic rat	c load ing	Static permissible moment N-m*					Mass	
							Greasing	Grease	Width		Height	Pitch		С	Co	N	/ A	N	Лв	Mc	LM block	LM rail
С	S×ℓ	Li	Т	К	Ν	Е	d	nipple	W۱	W2	Mı	F	$d_1 \times d_2 \times h$	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
3.5	M1.6×1.3	6.7		0					20	25	2.6	10		0.18	0.27	0.293	2.11	0.293	2.11	0.45	0.0011	0.055
5.5	M2×1.3	10.7	_	3	_	_	_		J _0.02	2.5	2.0	10	_	0.3	0.44	0.726	4.33	0.726	4.33	0.73	0.0016	0.055
—	M2×1.5	8.8		15	0.0		0.0		<u>ه</u> ٥	25	4	15	2 4 7 2 5 7 1	0.32	0.59	0.884	6.51	0.884	6.51	1.53	0.003	0.14
7	MO CV1 0	10		4.5	0.0		0.0		J _0.02	3.5	4	15	2.4^3.3^1	0.55	0.00	1 0 /	11.0	1 0 /	110	0.40	0.004	0.14

Μ

M

Model No.

RSR 3M

RSR 3N RSR 5M

RSR 5N

W

External dimensions

Height Width Length

W

8 16

Т

12

16.9 8

20.1

Μ

4

6 12

Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistance to corrosion and environment.

M2.6×1.8 12

Models RSR3M and 3N do not have a greasing hole. When lubricating them, apply a lubricant directly to the LM rail raceways.

To secure the LM rail of models RSR5M and 5N, use cross-recessed head screws for precision equipment (No. 0 pan head screw, class 1) M2.

В

1 No. of LM blocks used on the same rail 2 Model number

Dust prevention accessory symbol (see page a-412) 4 Radial clearance symbol (see page a-35) **5**LM rail length (in mm) **6**Accuracy symbol (see page a-45) **7**LM rail is made of stainless steel Symbol for No. of rails used on the same plane

Note) This model number indicates that a single-rail unit constitutes one set (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum).

Standard Length and Maximum Length of the LM Rail P. a-414

5

6 7 8

Static permissible moment* 1 block: static permissible moment value with 1 LM block 2 blocks: static permissible moment value with 2 blocks closely contacting with each other

11.9

1.84

11.9

2.49 0.004

Recommended tightening torque when mounting the LM rail/block

0.55

Table 10 shows recommended bolt tightening torques when mounting the LM block and LM rail of models RSR3M/3N.

0.96

1.84

Table 10 Recommended Tightening Torques of Mounting Bolts

Model No. of screw	Recommended tightening torque (N-m)
M1.6	0.09
M2	0.19

Note: Applicable to austenitic stainless steel hexagon socket bolts.

9

Models RSR7 to 12N/7M/9KM/12VM

	External dimensions			LM block dimensions							LM rail dimensions					Basic load rating		Static permissible moment N-m*				Mass					
Model No.	Height	Width	Length									Greasing hole	Grease	Width		Height	Pitch		С	Co	N	1.	N	в	Mc	LM block	LM rail
	M	W	L	В	С	S×ℓ	Lı	Т	К	Ν	Е	d	nipple	W۱	W2	Мı	F	$d_1 \times d_2 \times h$	kN	kΝ	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
RSR 7M	8	17	23.4	12	8	M2X2.5	13.4	_	6.5	17		12		7 0	5	47	15	0 4×4 0×0 0	0.88	1.37	2.93	20.8	2.93	20.8	5	0.013	0.23
RSR 7N	0	17	33	12	13	1012/2.0	23		0.5	1.7		1.2	_	¹ -0.02	5	4.7	15	2.4^4.2^2.3	1.59	2.5	8.68	49.9	8.68	49.9	9.12	0.018	0.20
RSR 9KM	10	20	30.8	15	10	Maya	19.8		70	0.4		15		0.0	5 5	5 5	20	0.51/01/0.0	1.47	2.25	7.34	43.3	7.34	43.3	10.4	0.018	0.22
RSR 9N	10	20	41	15	16	1013/0	29.8	_	7.0	2.4		1.5	—	9 -0.02	5.5	5.5	20	3.5×6×3.3	2.6	3.96	18.4	97	18.4	97	18.4	0.027	0.52
RSR 12VM	10	07	35	20	15	M2V2 F	20.6		10	0		0		10 0	75	7.5	25	0.51/01/4.5	2.65	4.02	11.4	74.9	10.1	67.7	19.2	0.037	0.59
RSR 12N	13	21	47.7	20	20	1013/0.0	33.3	_	10	3	_	2	—	1∠ _0.025	7.5	7.5	25	3.5×6×4.5	4.3	6.65	28.9	163	25.5	145	31.8	0.055	0.56
RSR 15VM	16	20	43	25	20	MaX4	25.7		10	25	3.6		DP107	15 0	0 5	0.5	40	0.51/01/4.5	4.41	6.57	23.7	149	21.1	135	38.8	0.069	0.025
RSR 15N	10	32	61	25	25	1013/4	43.5	_	12	3.5	3.7	_	FBIOT	15 _0.025	0.0	9.5	40	3.5×6×4.5	7.16	10.7	63.1	330	55.6	293	63	0.093	0.925
RSR 20VM	25	46	66.5	20	20	MAXE	45.2	57	175	5	6.4		A MGE	20 0	10	15	60		8.82	12.7	75.4	435	66.7	389	96.6	0.245	1.05
RSR 20N	25	40	86.3	30	30	101470	65	5.7	17.5	5	0.4	_	A-WOF	20 -0.03	15	15	00	6×9.5×8.5	14.2	20.6	171	897	151	795	157	0.337	1.95

Note Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistance to corrosion and environment.

Model number coding

2 RSR15V M UU C1 +230L P M-I 6 7 8 3 4 1 5 2

No. of LM blocks used on the same rail 2 Model number

3 Dust prevention accessory symbol (see page a-412) **4** Radial clearance symbol (see page a-35) **5**LM rail length (in mm) **6**Accuracy symbol (see page a-45) **7**LM rail is made of stainless steel Symbol for No. of rails used on the same plane

Note) This model number indicates that a single-rail unit constitutes one set (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum).

ᇄᄡᄣ a-418

Standard Length and Maximum Length of the LM Rail P. a-414

Note) Static permissible moment* 1 block: static permissible moment value with 1 LM block

2 blocks: static permissible moment value with 2 blocks closely contacting with each other

Models RSR15,20VM/N

Unit: mm

2

a. Dimensions of the LM Guides

Model RSR-WM (WV) Model RSR-WVM Model RSR-WM

Models RSR15WV/WVM/WN

Unit: mm

Models RSR3 to 7WM/WN

	E dim	xterna	al ons				LM b	lock c	limens	sions					LM	rail d	limens	sions	;	Basic rati	load ing	Statio	c permis	ssible m	noment	N-m*	Ma	ISS
Model No.	Height	Width	Length									Greasing	Grease	Width			Height	Pitch		С	Co	N	1.	N	в	Mc	LM block	LM rail
	м	W	L	В	С	S×ℓ	Lī	Т	К	Ν	Е	d	nipple	W1	W2	Wз	Мı	F	$d_1 \times d_2 \times h$	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
**RSR 3WM **RSR 3WN	4.5	12	14.9 19.9	_	4.5 8	M2×1.7	8.5 13.3	—	3.5	0.8	—	0.8	_	6 _00	3	-	2.6	15	2.4×4×1.5	0.25 0.39	0.47 0.75	0.668 1.57	4.44 9.06	0.668 1.57	4.44 9.06	1.48 2.36	0.002 0.003	0.12
**RSR 5WM **RSR 5WN	6.5	17	22.1 28.1	_	6.5 11	M3×2.3	13.7 19.7	_	5	1.1	_	0.8	_	10 ⁰ _{-0.025}	3.5	_	4	20	3×5.5×3	0.51 0.75	0.96 1.4	1.97 4.06	13.1 23.5	1.97 4.06	13.1 23.5	4.89 7.13	0.007 0.01	0.28
**RSR 7WM **RSR 7WN	9	25	31 40.9	_	12 18	M4×3.5	20.4 30.3	_	7	1.6	_	1.2	_	14 _{-0.05}	5.5	-	5.2	30	3.5×6×3.2	1.37 2.04	2.16 3.21	7.02 14.7	40.7 77.6	7.02 14.7	40.7 77.6	15.4 22.9	0.021 0.026	0.51
RSR 9WV **RSR 9WVM **RSR 9WN	12	30	39 39 50.7	21 21 23	12 12 24	M2.6×3 M2.6×3 M3×3	27 27 38.7	_	7.8	2	_	1.6	_	18 ⁰ _{-0.05}	6	-	7.5	30	3.5×6×4.5	2.45 2.45 3.52	3.92 3.92 5.37	16 16 31	92.9 92.9 161	16 16 31	92.9 92.9 161	36 36 49.4	0.035 0.035 0.051	1.08
RSR 12WV **RSR 12WVM **RSR 12WN	14	40	44.5 44.5 59.5	28	15 15 28	M3×3.5	30.9 30.9 45.9	4.5	10	3	_	2	_	24 _{-0.05}	8	_	8.5	40	4.5×8×4.5	4.02 4.02 5.96	6.08 6.08 9.21	24.5 24.5 53.9	138 138 274	21.7 21.7 47.3	123 123 242	59.5 59.5 90.1	0.075 0.075 0.101	1.5
RSR 15WV **RSR 15WVM **RSR 15WN	16	60	55.5 55.5 74.5	45	20 20 35	M4×4.5	38.9 38.9 57.9	5.6	12	3.5	3	_	PB107	42 _{-0.05}	9	23	9.5	40	4.5×8×4.5	6.66 6.66 9.91	9.8 9.8 14.9	50.3 50.3 110	278 278 555	44.4 44.4 97.3	248 248 490	168 168 255	0.17 0.17 0.21	3

(Note) "**" indicates that since stainless steel is used in the LM block, LM rail and balls, these models are highly resistance to corrosion and environment.

To secure the LM rail of models RSR3WM and 3WN, use cross-recessed head screws for precision equipment (No. 0 pan head screw, class 1) M2.

2 RSR12WV M UU C1 +310L H M Model number coding 1

3 4 5 6 7 2

1No. of LM blocks used on the same rail 2Model number

3 Dust prevention accessory symbol (see page a-412) **4** Radial clearance symbol (see page a-35) **5**LM rail length (in mm) **6**Accuracy symbol (see page a-45) **7**LM rail is made of stainless steel

Note) Static permissible moment

I block: static permissible moment value with I LM block 2 blocks: static permissible moment value with 2 blocks closely con-

tacting with each other

Overall LM Block Length with Options

Overall LM Block Length (Dimension L) of Model RSR with a Dust Prevention Accessory Attached

UU
—
—
14.9
19.9
16.9
20.1
22.1
28.1
23.4
33
31
40.9
30.8
41
39
39
50.7

Unit: mm
UU
35
47.7
44.5
44.5
59.5
43
61
55.5
55.5
74.5
66.5
86.3

Note: " — " indicates not available.

Overall LM Block Length (Dimension L) of Model RSR with QZ Lubricator Attached

	Unit: mm
Model No.	QZUU
RSR 9	41
RSR 9N	51
RSR 9W	49
RSR 9WN	61
RSR 12	45
RSR 12N	58
RSR 12W	54.5
RSR 12WN	69.5
RSR 15	55
RSR 15N	73
RSR 15W	67.5
RSR 15WN	86.5

Overall LM Block Length without a Seal

Model No.	Without seal
RSR 3M	12
RSR 3N	16
RSR 3WM	14.1
RSR 3WN	19.1
RSR 5M	15.5
RSR 5N	18.7
RSR 5WM	20.7
RSR 5WN	26.7
RSR 7M	22
RSR 7N	31.6
RSR 7WM	30
RSR 7WN	39.9
RSR 9KM	27.8
RSR 9N	37.8
RSR 9WV	36
RSR 9WVM	36
RSR 9WN	47.7

	Unit: mm
Model No.	Without seal
RSR 12VM	31
RSR 12N	43.7
RSR 12WV	41.3
RSR 12WVM	41.3
RSR 12WN	56.3
RSR 15VM	38.9
RSR 15N	56.5
RSR 15WV	51.5
RSR 15WVM	51.5
RSR 15WN	70.5
RSR 20VM	61.5
RSR 20N	81.3

Precautions on Use

QZ Lubricator for THK LM Guides

Handling

- •Dropping or hitting this product may damage it. Take much care when handling it.
- •Do not clean it with an organic solvent or white kerosene.
- Do not leave it unpacked for a long period of time.
- •Do not block the air vent with grease or the like.

Service temperature range

Use in a special environment

Precaution on selection

Be sure the stroke is longer than the overall length of the LM block length attached with QZ Lubricator.

Corrosion prevention of LM Guides

•QZ Lubricator is a lubricating device designed to feed a minimum amount of oil to the ball raceway of LM rails, and does not provide corrosion prevention to the whole LM Guide. When using it in an environment subject to a coolant or the like, we strongly recommend applying grease or other anti-corrosion agent to the mounting base surface and the LM rail end surfaces of the LM Guide as an anti-corrosion measure.

Miniature Type LM Guide_® Model RSR-Z

Structure and Features

With model RSR-Z, balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Balls of model RSR-Z circulate in a compact structure and perform infinite linear motion with no limit in stroke.

Also, it has the same dimensions as models RSR/RSR-W, but achieves a lighter weight and a lower price.

Weight saving

Since part of the LM block body uses a resin material, the block mass is reduced by up to 28% from the conventional type model SRS-V. This makes RSR-Z a low-inertia type.

Smooth motion

The unique structure of the endplate allows the balls to circulate smoothly and infinitely.

Highly corrosion resistant

Since the LM block, LM rail and balls use stainless steel, this model is highly resistant to corrosion.

Low noise

Since the unloaded ball path is made of resin, there is no metallic contact and low noise is achieved.

മ

a-427

Rated Loads in All Directions

Model RSR-Z is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

The basic load ratings of models RSR7Z/WZ and 9Z/WZ are uniform in the four directions (radial, reverse-radial and lateral directions), and their actual values are provided in the dimensional table for RSR-Z.

The basic load ratings of models RSR12Z/WZ and 15Z/WZ indicate the values in the radial direction in Fig. 3, and their actual values are provided in the dimensional table for RSR-Z. The values in the reverse-radial and lateral directions are obtained from table 1.

Table 1 Basic Load Ratings of Models RSR12Z/WZ and 15Z/WZ in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	Co
Reverse-radial direction	CL=0.78C	Col=0.70Co
Lateral direction	C⊤=0.78C	Cot=0.71Co

Equivalent Load

When the LM block of models RSR7Z/WZ and 9Z/WZ receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

P⊧	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Lateral direction 	
\mathbf{P}_{R}	Radial load	(N)
P∟	Reverse-radial load	(N)
Ρ	:Lateral load	(N)

When the LM block of model RSR12Z/WZ and 15Z/WZ receives loads in the radial and lateral directions, or the reverse-radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

P _E =X• where	$\mathbf{P}_{R}\left(\mathbf{P}_{L}\right) + \mathbf{Y} \cdot \mathbf{P}_{T}$	
P⊧	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Lateral direction 	
PB	Radial load	(N)
P∟	Reverse-radial load	(N)
P	:Lateral load	(N)
X/Y axes	: Equivalent factor (see tables 2 a	nd 3)

Table 2 Equivalent Factor of Models RSR12Z/WZ and 15Z/WZ (When radial and lateral loads are applied)

P⊧	Х	Y
Equivalent load in radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table 3 Equivalent Factor of Models RSR12Z/WZ and 15Z/WZ (When reverse-radial and lateral loads are applied)

PE	Х	Y
Equivalent load in reverse-radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Options

Dust Prevention Accessories

 \mathbb{THK} offers dust prevention accessories for models RSR-Z/WZ.

When a dust prevention accessory is required, specify the desired item with the corresponding symbol provided in table 4 (for details of dust prevention accessories, see page a-24). For supported model numbers for dust prevention accessories and overall LM block length with dust prevention accessories attached (dimension L), see page a-436.

Table 4 Symbols of Dust Prevention Accessories for Model RSR-Z

Symbol	Dust prevention accessory
UU	With end seal
SS	With end seal + side seal

Seal resistance value

For the maximum seal resistance value per LM block when a lubricant is applied on seals RSR-Z…UU, refer to the corresponding value provided in table 5.

Dedicated Cap C for LM Rail Mounting Holes

If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign matter, they may enter the LM block structure. Entrance of such foreign matter can be prevented by covering each LM rail mounting hole with the dedicated cap so that the top of the mounting holes is on the same level as the LM rail top face.

Since the dedicated cap C for LM rail mounting holes uses a special synthetic resin with high oil resistance and high wear resistance, it is highly durable.

When placing an order, specify the desired cap type with the corresponding cap number indicated in table 6.

For the procedure for mounting the cap, see page a-22.

	Unit: N
Model No.	Seal resistance value
RSR 7Z	0.08

Table 5 Maximum Seal Resistance Value of Seals RSB-7…UU

RSR 9Z	0.1
RSR 12Z	0.4
RSR 15Z	0.8
RSR 7WZ	0.4
RSR 9WZ	0.8
RSR 12WZ	1.1
RSR 15WZ	1.3

Table 6 Major Dimensions of Dedicated Cap C

Мо	del	Cap C	Bolt	Major dime	nsions mm
N	о.	model No.	used	D	Н
RSR	9WZ	C3	M3	6.3	1.2
RSR	12Z	C3	M3	6.3	1.2
RSR	15Z	C3	M3	6.3	1.2

Stopper

With models RSR-Z/WZ, balls will fall off if the LM block is removed from the LM rail. To prevent the LM block from being pulled out, a stopper is mounted before shipment. If removing the stopper when using the LM Guide, be sure that the LM block will not overrun.

			Unit: mm
Model No.	А	В	С
RSR 7Z	11	5	7.7
RSR 9Z	13	6	9.5
RSR 12Z	16	7	12.5
RSR 15Z	19	7	14.5
RSR 7WZ	18	6	8.2
RSR 9WZ	23	7	11.5
RSR 12WZ	29	7	13.5
RSR 15WZ	46	7	14.5

Fig. 4 Stopper (Type C) for Model RSR-Z

Accuracy of the Mounting Surface

Model RSR-Z uses Gothic arch grooves in the ball raceways. When two rails of RSR are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Section 7.3 "Permissible Error of the Mounting Surface" on page a-62.

Table 7 Dimensional Table for Stopper (Type C) for Model RSR-Z/WZ

Standard Length and Maximum Length of the LM Rail

Table 8 shows the standard lengths and the maximum lengths of model RSR-Z/WZ variations.

Table 8 Standard Length and Maximum Length of the LM Rail for Model RSR-Z/WZ Unit: mm

Model No.	RSR 7Z	RSR 9Z	RSR 12Z	RSR 15Z	RSR 7WZ	RSR 9WZ	RSR 12WZ	RSR 15WZ
Standard LM rail length (L ^o)	40 55 70 85 100 130	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 230 270 310 350 390 430 470 550 670 870	50 80 110 140 170 200 260 290	50 80 110 140 170 200 260 290 320	70 110 150 230 270 310 390 470 550	110 150 230 270 310 430 550 670 790
Standard pitch F	15	20	25	40	30	30	40	40
G	5	7.5	10	15	10	10	15	15
Max length	300	1000	1340	1430	400	1000	1430	1800

Note 1: The maximum length varies with accuracy grades. Contact 冗光代 for details.

Note 2: The LM rails of these models are all made of stainless steel.

Unit: mm

a-433

Model RSR15ZM

Models RSR7 to 12ZM

	E dir	Extern nensio	al ons				LM b	lock c	dimen	sions					LM ra	ail dim	ensior	IS	Basio rat	load ing	Static	permis	sible r	nomen	t N-m*	Ма	ISS
Model No.	Height	Width	Length									Greasing hole	Grease	Width		Height	Pitch		С	Co	N	/ IA	N	1в	Mc	LM block	LM rail
	M	W	L	В	С	S×ℓ	Lı	Т	К	Ν	Е	d	nipple	W ₁	W2	Мı	F	$d_1 \times d_2 \times h$	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
RSR 7ZM	8	17	23.4	12	8	M2×2.5	13.2	3.4	6.5	1.6	_	1.5	_	7 _{-0.02}	5	4.7	15	2.4×4.2×2.3	0.88	1.37	2.93	20.7	2.93	20.7	5	0.008	0.23
RSR 9ZM	10	20	30.8	15	10	M3×2.7	19.4	4.6	7.8	2.4	_	1.6	_	9 _{-0.02}	5.5	5.5	20	3.5×6×3.3	1.47	2.25	7.34	43	7.34	43	10.4	0.014	0.32
RSR 12ZM	13	27	35	20	15	M3×3.2	20.4	4.5	10.6	3.1	—	2	_	12 _{-0.025}	7.5	7.5	25	3.5×6×4.5	2.65	4.02	11.4	74.9	10.1	67.7	19.2	0.028	0.58
RSR 15ZM	16	32	43	25	20	M3×3.5	26.5	5.5	12.6	2.9	3.6	_	PB107	15 _{-0.025}	8.5	9.5	40	3.5×6×4.5	4.41	6.57	23.7	149	21.1	135	38.8	0.05	0.925

Note Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistance to corrosion and environment.

Note Static permissible moment* 1 block: static permissible moment value with 1 LM block

2 blocks: static permissible moment value with 2 blocks closely con-

tacting with each other

Model number coding

2 RSR15Z M UU C1 +230L P M- II 2 3 4 5 6 7 8

No. of LM blocks used on the same rail 2 Model number

Dust prevention accessory symbol (see page a-429)
 Radial clearance symbol (see page a-35)
 LM rail length (in mm)
 Accuracy symbol (see page a-45)
 LM rail is made of stainless steel
 Symbol for No. of rails used on the same plane

Note This model number indicates that a single-rail unit constitutes one set (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum).

Model RSR15WZM

Models RSR7 to 12WZM

	E dir	External LM block dimensions									LM rail dimensions						Basic rati	load ng	Static permissible moment N-m*						ISS			
Model No.	Heigh	Width	Length									Greasing hole	Grease	Width			Height	Pitch		С	Co	N	1.	N	1в	Mc	LM block	LM rail
	M	W	L	В	С	S×ℓ	Lı	Т	К	N	Е	d	nipple	W۱	W2	Wз	Mı	F	$d_1 \times d_2 \times h$	kN	kΝ	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
RSR 7WZM	9	25	31.5	19	10	M3×2.8	19.7	3.4	7	1.8		1.6	_	14 _{-0.05}	5.5		5.2	30	3.5×6×3.2	1.37	2.16	6.54	42.1	6.54	42.1	15.4	0.018	0.51
RSR 9WZM	12	30	39	21	12	M3×2.8	27	3.9	9.1	2.3	_	1.6	_	18 _{-0.05}	6	_	7.5	30	3.5×6×4.5	2.45	3.92	16	92.9	16	92.9	36	0.03	1.08
RSR 12WZM	14	40	44.5	28	15	M3×3.6	29.3	4.5	10.6	3		2	_	24 _{-0.05}	8	_	8.5	40	4.5×8×4.5	4.02	6.08	24.5	138	21.7	123	59.5	0.06	1.5
RSR 15WZM	16	60	55.5	45	20	M4×4.5	39.3	5.4	12.6	3	3.6		PB107	42 _00	9	23	9.5	40	4.5×8×4.5	6.66	9.8	50.3	278	44.4	248	168	0.135	3

Note Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistance to corrosion and environment.

Note) Static permissible moment* 1 block: static permissible moment value with 1 LM block

2 blocks: static permissible moment value with 2 blocks closely con-

tacting with each other

Model number coding

2 RSR12WZ M SS C1 +390L H M 2 3 4 5 6 7

No. of LM blocks used on the same rail 2 Model number

 Image: Second symbol symbol (see page a-429)
 Image: Second symbol symbol (see page a-35)

 Image: Second symbol s

Unit: mm

Overall LM Block Length with Options

Overall LM Block Length (Dimension L) of Models RSR-Z and RSR-WZ with a Dust Prevention Accessory Attached Unit: mm

		WOUEI NO.	SS	UU	Model No.
_	31.5	RSR 7WZM	—	23.4	RSR 7ZM
39	39	RSR 9WZM	—	30.8	RSR 9ZM
44.5	44.5	RSR 12WZM	35	35	RSR 12ZM
55.5	55.5	RSR 15WZM	43	43	RSR 15ZM
	39 44.5 55.5	RSR 9WZM RSR 12WZM RSR 15WZM	— 35 43	30.8 35 43	RSR 9ZM RSR 12ZM RSR 15ZM

Note: "-" indicates not available.

Overall LM Block Length without a Seal

			Unit: mm
Model No.	Without seal	Model No.	Without seal
RSR 7ZM	20.4	RSR 7WZM	28
RSR 9ZM	29.1	RSR 9WZM	37.6
RSR 12ZM	32.6	RSR 12WZM	42.1
RSR 15ZM	40.2	RSR 15WZM	53.1

High Temperature Type Miniature LM Guide® Model RSR-M1

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

High temperature type miniature LM Guide model RSR-M1 is capable of being used at service temperature up to 150°C thanks to THK 's unique technologies in material, heat treatment and lubrication.

Maximum service temperature of 150°C

Use of stainless steel in the endplates and high-temperature rubber in the end seals achieves the maximum service temperature of 150°C.

Dimensional stability

Since it is dimensionally stabilized, it demonstrates superb dimensional stability after being heated or cooled (note that it shows linear expansion at high temperature).

Corrosion resistance

Since its LM block, LM rail and balls are made of stainless steel, this model is highly resistant to corrosion.

High temperature grease

This model uses high temperature grease that shows little grease-based fluctuation in rolling resistance even if temperature changes from low to high levels.

Thermal Characteristics of LM Rail and LM Block Materials

Specific heat capacity

- Thermal conductivity
- Average coefficient of linear expansion

:0.481J/(g•K) :20.67W/(m•K) :11.8×10⁻⁶/°C

Types and Features

Models RSR-M1/RSR-M1K/M1V

These models are standard types.

Models RSR-M1W/M1WV

These models have greater overall LM block lengths (L), broader widths (W) and greater rated loads and permissible moments than standard types.

Model RSR-M1N

It has a greater overall LM block length (L) and a greater rated load than standard types.

Model RSR-M1WN

It has a longer overall LM block length (L), a greater rated load than standard types. Achieves the greatest load capacity among the high-temperature type miniature LM Guide models.

Rated Loads in All Directions

Model RSR-M1 is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

The basic load ratings of models RSR9M1/M1W are uniform in the four directions (radial, reverse-radial and lateral directions), and their actual values are provided in the dimensional table for RSR-M1.

The basic load ratings of models RSR12M1 to 20M1 indicate the values in the radial direction in Fig. 2, and their actual values are provided in the dimensional table for RSR-M1. The values in the reverse-radial and lateral directions are obtained from table 1.

Table 1 Basic Load Ratings of Models RSR12M1 to 20M1 in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	Co
Reverse-radial direction	CL=0.78C	C _{0L} =0.70C ₀
Lateral direction	CT=0.78C	Cot=0.71Co

Equivalent Load

When the LM block of models RSR9M1/M1W receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}} \left(\mathbf{P}_{\mathrm{L}} \right) + \mathbf{P}_{\mathrm{T}}$

whe	re					
PE	P _E ∶Equivalent load (
	 Radial direction 					
	 Reverse-radial direction 					
	 Lateral direction 					
\mathbf{P}_{R}	Radial load	(N)				
P۱	Reverse-radial load	(N)				
PT	:Lateral load	(N)				

When the LM block of models RSR12M1 to 20M1 receives loads in the radial and lateral directions, or the reverse-radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below. Table 2 Equivalent Factor of Models RSR12M1 to 20M1

$\mathbf{P}_{\mathrm{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{R}} (\mathbf{P}_{\mathrm{L}}) + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$

where		
P⊧	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Lateral direction 	
Pr	Radial load	(N)
P∟	Reverse-radial load	(N)
P	:Lateral load	(N)
X/Y axes	: Equivalent factor (see tables 2 a	nd 3)

 Fable 2 Equivalent Factor of Models RSR12M1 to 20M1

 (When radial and lateral loads are applied)

PE	Х	Y
Equivalent load in radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table 3 Equivalent Factor of Models RSR12M1 to 20M1 (When reverse-radial and lateral loads are applied)

Pe	Х	Y
Equivalent load in reverse-radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Options

Dust Prevention Accessories

 \Box HK offers an end seal for model RSR-M1 as a dust prevention accessory. (For details of the end seal, see page a-24).

Table 4 Symbol of Dust Prevention Accessory for Model RSR-M1

Symbol		Dust prevention accessory
UU	With end seal	

Seal resistance value

For the maximum seal resistance value per LM block when a lubricant is applied on seals RSR-M1…UU, refer to the corresponding value provided in table 5. Table 5 Maximum Seal Resistance Value of Seals RSR-M1 \cdots UU

	Unit. N
Model No.	Seal resistance value
RSR 9M1	0.1
RSR 12M1	0.4
RSR 15M1	0.8
RSR 20M1	1.0
RSR 9M1W	0.8
RSR 12M1W	1.1
RSR 15M1W	1.3

Note: The seal resistance values above are values at normal temperature.

Stopper

With models RSR-M1, balls will fall off if the LM block is removed from the LM rail. To prevent the LM block from being pulled out, a stopper is mounted before shipment. If removing the stopper when using the LM Guide, be sure that the LM block will not overrun.

Table 6 Dimensional Table for Stopper (Type C) for Model RSR-M1

			Unit: mm
Model No.	А	В	С
RSR 9M1	13	6	9.5
RSR 12M1	16	7	12.5
RSR 15M1	19	7	14.5
RSR 20M1	25	7	20.0
RSR 9M1W	23	7	11.5
RSR 12M1W	29	7	13.5
RSR 15M1W	46	7	14.5

Fig. 3 Stopper (Type C) for Model RSR-M1

Accuracy of the Mounting Surface

Model RSR-M1 uses Gothic arch grooves in the ball raceways. When two rails of RSR are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Section 7.3 "Permissible Error of the Mounting Surface" on page a-62.

Standard Length and Maximum Length of the LM Rail

Table 7 shows the standard lengths and the maximum lengths of model RSR-M1 variations.

Table 7 Standard Longth and Maximum Longth of the LM Pail for Model PSP M1

Tab										
Model No.	RSR 9M1	RSR 12M1	RSR 15M1	RSR 20M1	RSR 9M1W	RSR 12M1W	RSR 15M1W			
Standard LM rail length (L _o)	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 220 245 270 320 370 470 570	70 110 150 230 270 310 350 390 430 430 470 550 670 870	220 280 340 460 640 880 1000	50 80 110 140 200 260 290 320	70 110 150 230 270 310 390 470 550	110 150 190 230 270 310 430 550 670 790			
Standard pitch F	20	25	40	60	30	40	40			
G	7.5	10	15	20	10	15	15			
Max length	1000	1340	1430	1800	1000	1430	1800			

Note 1: The maximum length varies with accuracy grades. Contact THK for details.

a-442 10-

Model RSR-M1K Model RSR-M1V Model RSR-M1N

Models RSR15, 20M1V/M1N

Models RSR9M1K/9M1N and RSR12M1V/M1N

	E din	xterna	al ons				LM b	lock c	limens	sions					LM ra	ail dim	ensio	ns	Basic rat	load ing	Static	permis	ssible r	nomen	t N-m*	Ма	iss
Model No.	Height	Width	Length									Greasing	Grease	Width		Height	Pitch	1	С	Co	N	1 A	N	1в	Mc	LM block	LM rail
	М	W	L	В	С	S×ℓ	Lı	Т	К	Ν	Е	d	nipple	W۱	W2	Мı	F	d1×d2×h	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
RSR 9M1K	10	20	30.8	15	10	M3X3	19.8	_	78	_	_	_		9 ⁰	55	55	20	3 5 8 6 8 3 3	1.47	2.25	7.34	43.3	7.34	43.3	10.4	0.018	0.32
RSR 9M1N		20	41	10	16	MOXO	29.8		7.0					0 -0.02	0.0	0.0	20	0.0/(0/(0.0	2.6	3.96	18.4	97	18.4	97	18.4	0.027	0.02
RSR 12M1V	13	27	35	20	15	M3X3 5	20.6		10	3		2		12 0	75	75	25	3 5 8 6 7 4 5	2.65	4.02	11.4	74.9	10.1	67.7	19.2	0.037	0.58
RSR 12M1N	10	21	47.7	20	20	1010/0.0	33.3		10	5		2		-0.025	1.5	1.5	20	0.0/0/4.0	4.3	6.65	28.9	163	25.5	145	31.8	0.055	0.50
RSR 15M1V	16	30	43	25	20	M3×4	25.7		10	35	3.6		PB107	15 0	85	0.5	40	3 57674 5	4.41	6.57	23.7	149	21.1	135	38.8	0.069	0.025
RSR 15M1N	10	52	61	25	25	1013/4	43.5		12	5.5	3.7		FBIO	10 -0.025	0.5	9.5	40	5.57074.5	7.16	10.7	63.1	330	55.6	293	63	0.093	0.925
RSR 20M1V	25	46	66.5	30	30	MAXE	45.2	57	17.5	5	6.4		A M6E	20 0	12	15	60	670 578 5	8.82	12.7	75.4	435	66.7	389	96.6	0.245	1.05
RSR 20M1N	20	40	86.3	38	30	1014/0	65	5.7	17.5	5	0.4		A-10101	20 -0.03	13	13	00	0/9.5/0.5	14.2	20.6	171	897	151	795	157	0.337	1.95

Note Static permissible moment* 1 block: static permissible moment value with 1 LM block

2 blocks: static permissible moment value with 2 blocks closely contacting with each other

Model number coding

2 RSR15 M1 V UU C1 +230L P- II 2 3 4 5 6 7 8 9

No. of LM blocks used on the same rail 2 Model number 3 Symbol for high-temperature type LM Guide Type of LM block 5 Dust prevention accessory symbol (see page a-441)

BRadial clearance symbol (see page a-35) 7LM rail length (in mm) Accuracy symbol (see page a-45) Symbol for No. of rails used on the same plane

Note This model number indicates that a single-rail unit constitutes one set (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum).

a 445

(E)

Model RSR-M1WV Model RSR-M1WN

w в

Models RSR15M1WV/M1WN

Models RSR9, 12M1WV/M1WN

Unit: mm Basic load Static permissible moment N-m* External LM block dimensions LM rail dimensions Mass dimensions rating Model No. Greasing Height Pitch Grease Width С Co M₄ Мв Мc LM block LM rail leight Width Length hole kN 1 block 2 blocks in 1 block 2 blocks in close contact Μ W В С L S×ℓ L Т Κ Ν Е nipple Wı W2 Wз Mı F kΝ l block kg kg/m d₁×d₂×h d close contac RSR 9M1WV 39 21 12 M2.6×3 27 2.45 3.92 16 92.9 16 92.9 36 0.035 18 _0_05 12 30 7.8 2 1.6 6 3.5×6×4.5 1.08 7.5 30 _ _ _ ____ RSR 9M1WN 50.7 23 24 38.7 3.52 M3×3 5.37 31 161 31 161 49.4 0.051 RSR 12M1WV 44.5 15 30.9 4.02 6.08 24.5 138 21.7 123 59.5 0.075 24 _0__0 40 M3×3.5 14 28 4.5 10 3 2 8 8.5 40 4.5×8×4.5 1.5 47.3 242 RSR 12M1WN 59.5 28 45.9 5.96 9.21 53.9 274 90.1 0.101 RSR 15M1WV 6.66 9.8 50.3 278 44.4 248 168 55.5 20 38.9 0.17 12 42 _0.05 16 60 45 5.6 3.5 3 PB107 23 9.5 40 4.5×8×4.5 3 M4×4.5 _ 9 RSR 15M1WN 74.5 35 57.9 9.91 14.9 110 555 97.3 490 255 0.21

> Note Static permissible moment* 1 block: static permissible moment value with 1 LM block

2 blocks: static permissible moment value with 2 blocks closely contacting with each other

2 RSR12 M1 WN UU C1 +310L P Model number coding 1

5 4 6 3 7 2 8

No. of LM blocks used on the same rail 2 Model number 3 Symbol for high-temperature type LM Guide 4 Type of LM block 5 Dust prevention accessory symbol (see page a-441) Badial clearance symbol (see page a-35) 7 LM rail length (in mm) Accuracy symbol (see page a-45)

a-446 ᆱᄡ

Overall LM Block Length with Options

Overall LM Block Length (Dimension L) of Model RSR-M1 with a Dust Prevention Accessory Attached

			Offic. Hill
Model No.	UU	Model No.	UU
RSR 9M1K	30.8	RSR 15M1V	43
RSR 9M1N	41	RSR 15M1N	61
RSR 9M1WV	39	RSR 15M1WV	55.5
RSR 9M1WN	50.7	RSR 15M1WN	74.5
RSR 12M1V	35	RSR 20M1V	66.5
RSR 12M1N	47.7	RSR 20M1N	86.3
RSR 12M1WV	44.5		
RSR 12M1WN	59.5		

Overall LM Block Length without a Seal

Model No.	Without seal
RSR 9M1K	27.8
RSR 9M1N	37.8
RSR 9M1WV	36
RSR 9M1WN	47.7
RSR 12M1V	31
RSR 12M1N	43.7
RSR 12M1WV	41.3
RSR 12M1WN	56.3

	Unit: mm
Model No.	Without seal
RSR 15M1V	38.9
RSR 15M1N	56.5
RSR 15M1WV	51.5
RSR 15M1WN	70.5
RSR 20M1V	61.5
RSR 20M1N	81.3

Precautions on Use

ITHK High Temperature LM Guide

Service Temperature of the High Temperature LM Guide

Maximum service temperature: 150°C

Selection of a High Temperature LM Guide

● For selecting a model number of high temperature LM Guide model RSR-M1, see section A of the " \\\\\\THK\' General Catalog - Technical Descriptions of the Products," provided separately. When selecting a model number, also determine the temperature factor fT while referring to the corresponding graph, and set hardness factor fH at 1.0.

Dimensional Accuracy of the High Temperature LM Guide

•The high temperature LM Guide is manufactured with the same dimensional accuracy as a standard LM Guide. At high service temperature, however, the former shows thermal expansion, and therefore, its dimensional accuracy changes by the thermal expansion.

a 449 High Temperature Type Miniature LM Guide Model RSR-M1

Calculation of Thermal Expansion of the High Temperature LM Guide

•Thermal expansion of the high temperature LM Guide is calculated in the following equation.

- $L_{2-1} = \alpha (t_2-t_1)L_1$
- L₂₋₁ : Thermal expansion by heating (mm)
- α : Coefficient of linear expansion (see table 8)
- t_2 : Heating temperature (°C)
- t1 : Normal temperature (°C)
- L1 : Length at normal temperature (mm)

Table 8 Coefficient of Linear Expansion by Material (×10⁻⁶/°C)

(The values other than high temperature LM Guide are excerpts from "Actual Designing - Part 2" by The Nikkan Kogyo Shimbun, Ltd.)

	High temperature LM Guide	SS400	FC25	SUS304	Aluminum
Coefficient of linear expansion	11.8	11.2 to 11.3	8.6 to 8.7	16.4	23

Note: If mounting the high temperature LM Guide on a material whose linear expansion coefficient is significantly different, or if the linear expansion coefficient is the same but the temperature is uneven, it may cause the LM rail to bend or the preload on the LM Guide to change (for preloads on the LM Guide, see page a-31).

Grease Used in the High Temperature LM Guide

•The LM Guide contains fluorinated grease as standard unless otherwise specified. The fol-

lowing table shows general properties of the grease for the high temperature LM Guide.

If other type of grease or lubricant is mixed with the high temperature grease, it may deteriorate the product performance.

When using the LM Guide in a vacuum environment, contact 冗光代.

Base oil	GPL105		
Base oil viscosity (20°C)	550(mm²/s)		
Oil separation rate (30 hr, 99°C)	4%(wt)		
Additive	Anticorrosive agent		
Service temperature range	-35℃ to +205℃		
Worked penetration	NLGI No.2		

Name: Krytox GPL225 (DuPont)

Change in Sliding Resistance due to Grease and Seal

•The sliding resistance of the LM Guide tends to increase in proportion to the increase in temperature due to high temperature grease or seal.

Lubrication of the High Temperature LM Guide

•The high temperature LM Guide needs to be greased roughly at an interval of every 100 km in travel distance. However, the greasing interval may vary depending on the service conditions, environment, atmosphere or temperature. It is necessary to adjust the greasing interval according to the circumstances.

Miniature Type LM Guide, with a Ball-fall-preventing Retainer Model RSH

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since a retainer holds the balls, they will not fall.

With the Miniature Type LM Guide with a Ball-fall-preventing Retainer Model RSH, balls circulate in a compact structure and perform infinite linear motion with no limit in stroke. The LM block is designed to have a shape with high rigidity in a limited space, and in combination with largediameter balls, demonstrates high rigidity in all directions.

Miniature size

This model is a highly reliable, ultra compact LM Guide that responds to weight saving and space saving.

Capable of receiving loads in all directions

This model is capable of receiving loads in all directions, and has a high load capacity because of large-diameter balls incorporated in two rows of raceways.

Highly corrosion resistant

Since the LM block, LM rail and balls use stainless steel, which is highly resistant to corrosion, it is optimal for clean-room applications.

• Equipped with a ball-fall-preventing retainer

The LM block contains a retainer capable of preventing balls from falling off. Since the balls will not fall even if the LM block is removed from the LM rail, you can use this LM Guide at ease.

Model RSH

This model is a standard type.

Rated Loads in All Directions

Model RSH is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

The basic load ratings of models RSH7 and 9 are uniform in the four directions (radial, reverse-radial and lateral directions), and their actual values are provided in the dimensional table for RSH.

The basic load ratings of model RSH12 indicate the values in the radial direction in Fig. 2, and their actual values are provided in the dimensional table for RSH. The values in the reverse-radial and lateral directions are obtained from table 1.

Table 1 Basic Load Ratings of Model RSH12 in All Directions

	-	
Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	Co
Reverse-radial direction	C∟=0.78C	C _{0L} =0.70C ₀
Lateral direction	CT=0.78C	Cot=0.71Co

Equivalent Load

When the LM block of models RSH7 and 9 receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}} \left(\mathbf{P}_{\mathrm{L}} \right) + \mathbf{P}_{\mathrm{T}}$

where

P⊧	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Lateral direction 	
\mathbf{P}_{R}	Radial load	(N)
P∟	Reverse-radial load	(N)
PT	:Lateral load	(N)

When the LM block of model RSH12 receives loads in the radial and lateral directions, or the reverse-radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{F}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{R}} (\mathbf{P}_{\mathrm{L}}) + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$ where PF :Equivalent load (N) Badial direction Reverse-radial direction Lateral direction P : Radial load (N) P :Reverse-radial load (N) PT :Lateral load (N) X/Y axes : Equivalent factor (see tables 2 and 3)

Table 2 Equivalent Factor of Model RSH12 (When radial and lateral loads are applied)

PE	Х	Y
Equivalent load in radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table 3 Equivalent Factor of Model RSH12 (When reverse-radial and lateral loads are applied)

P⊧	Х	Y
Equivalent load in radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Options

Dust Prevention Accessories

 \mathbb{THK} offers an end seal for model RSH as a dust prevention accessory.

When the end seal is required, specify the desired item with the corresponding symbol provided in table 4.

(For details of the end seal, see page a-24.)

Table 4 Symbol of Dust	t Prevention	Accessory	for	Model	RSH
------------------------	--------------	-----------	-----	-------	-----

Symbol	Dust prevention accessory
UU	With end seal

Seal resistance value

For the maximum seal resistance value per LM block when a lubricant is applied on seals RSH…UU, refer to the corresponding value provided in table 5. Table 5 Maximum Seal Resistance Value of Seals RSR…UU

	Unit: N
Model No.	Seal resistance value
RSH 7	0.08
RSH 9	0.1
RSH 12	0.4

Dedicated Cap C for LM Rail Mounting Holes

If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign matter, they may enter the LM block structure. Entrance of such foreign matter can be prevented by covering each LM rail mounting hole with the dedicated cap so that the top of the mounting holes is on the same level as the LM rail top face.

Since the dedicated cap C for LM rail mounting holes uses a special synthetic resin with high oil resistance and high wear resistance, it is highly durable.

When placing an order, specify the desired cap type with the corresponding cap number indicated in table 6.

For the procedure for mounting the cap, see page a-22.

Table 6 Major Dimensions of Dedicated Ca	ар С
--	------

Model	Cap C	Bolt	Major dimensions mm	
No.	model No.	used	D	Н
RSH 12	C3	M3	6.3	1.2

ھ

Accuracy of the Mounting Surface

Model RSH uses Gothic arch grooves in the ball raceways. When two rails of RSH are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Section 7.3 "Permissible Error of the Mounting Surface" on page a-62.

Standard Length and Maximum Length of the LM Rail

Table 7 shows the standard lengths and the maximum lengths of model RSH variations.

Model No.	RSH 7	RSH 9	RSH 12
Standard LM rail length (Lo)	40 55 70 85 100 130	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570
Standard pitch F	15	20	25
G	5	7.5	10
Max length	300	1000	1340

Table 7 Standard Length and Maximum Length of the LM Rail for Model RSH Unit: mm

Note 1: The maximum length varies with accuracy grades. Contact THK for details.

																							ι	Jnit: mm
	Extern	al dime	nsions			LM block	dimensi	ons				LM ra	ail dime	ensior	าร	Basic rat	load Ing	Static	permis	sible r	nomen	t N-m*	Ма	ISS
Model No.	Height	Width	Length							Greasing	Width	14/	Height	Pitch	ما عرما عرام	С	Co	N	la	N	1в	Mc	LM block	LM rail
	М	W	L	В	С	S×ℓ	Lı	К	N	d	VV 1	VV2	IVI1	F	01×02×N	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
RSH 7M	8	17	23.4	12	8	M2×2.5	13.4	6.5	1.7	1.2	7 _{-0.02}	5	4.7	15	2.4×4.2×2.3	0.88	1.37	2.93	20.8	2.93	20.8	5	0.01	0.23
RSH 9KM	10	20	30.8	15	10	M3×3	19.8	7.8	2.4	1.5	9 _00	5.5	5.5	20	3.5×6×3.3	1.47	2.25	7.34	43.3	7.34	43.3	10.4	0.018	0.32
RSH 12VM	13	27	35	20	15	M3×3.5	20.6	10	3	2	12 _05	7.5	7.5	25	3.5×6×4.5	2.65	4.02	11.4	74.9	10.1	67.7	19.2	0.037	0.58

Note Since stainless steel is used in the LM block. LM rail and balls, these models are highly resistance to corrosion and environment.

Note) Static permissible moment* 1 block: static permissible moment value with 1 LM block

2 blocks: static permissible moment value with 2 blocks closely contacting with each other

Model number coding

2 RSH9K M UU C1 +100L P M- II 3 4 6 7 8 1 2 5

No. of LM blocks used on the same rail 2 Model number

3 Dust prevention accessory symbol (see page a-453) **4** Radial clearance symbol (see page a-35) **5**LM rail length (in mm) **6**Accuracy symbol (see page a-45) **7**LM rail is made of stainless steel Symbol for No. of rails used on the same plane

(Note) This model number indicates that a single-rail unit constitutes one set (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum).

2

Overall LM Block Length with Options

Overall LM Block Length (Dimension L) of Model RSH with a Dust **Prevention Accessory Attached**

	Unit: mm
Model No.	UU
RSH 7M	23.4
RSH 9KM	30.8
RSH 12VM	35

Overall LM Block Length without a Seal

	Unit: mm
Model No.	Without seal
RSH 7M	20.4
RSH 9KM	27.8
RSH 12VM	31

Miniature Type LM Guide, with a Ball-fall-preventing Retainer Model RSH-Z

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since a retainer holds the balls, they will not fall off even if the LM block is removed from the LM rail.

With model RSH-Z, balls circulate in a compact structure and perform infinite linear motion with no limit in stroke.

Also, it has the same dimensions as the conventional model, but achieves a lower price.

Equipped with a ball-fall-preventing retainer

Model RSH-Z has a retainer capable of preventing balls from falling off. Since the balls will not fall even if the LM block is removed from the LM rail, you can use this LM Guide at ease.

Weight saving

Since part of the LM block body uses a resin material, the block mass is reduced by up to 30% from the conventional type. This makes RSH-Z a low-inertia type.

Highly corrosion resistant

Since the LM block, LM rail and balls use stainless steel, which is highly resistant to corrosion, this model is optimal for clean-room applications.

Low noise

Since the unloaded ball path is made of resin, there is no metallic contact and low noise is achieved.

Model RSH-Z

This model is a standard type.

Model RSH-WZ

This model has a greater overall LM block length (L), broader width (W) and greater rated load and permissible moment than model RSH-Z.

Rated Loads in All Directions

Model RSH-Z is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

The basic load ratings of models RSH7Z/WZ and 9Z/WZ are uniform in the four directions (radial, reverse-radial and lateral directions), and their actual values are provided in the dimensional table for RSH-Z.

The basic load ratings of models RSH12Z/WZ and 15Z/WZ indicate the values in the radial direction in Fig. 2, and their actual values are provided in the dimensional table for RSH-Z. The values in the reverse-radial and lateral directions are obtained from table 1.

Table 1 Basic Load Ratings of Models RSH12Z/WZ and 15Z/WZ in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C₀
Reverse-radial direction	CL=0.78C	C _{0L} =0.70C ₀
Lateral direction	CT=0.78C	Cot=0.71Co

Equivalent Load

When the LM block of models RSH7Z/WZ and 9Z/WZ receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

WITE	i e	
P⊧	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Lateral direction 	
\mathbf{P}_{R}	Radial load	(N)
P∟	Reverse-radial load	(N)
PT	:Lateral load	(N)

When the LM block of models RSH12Z/WZ and 15Z/WZ receives loads in the radial and lateral directions, or the reverse-radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{R}} (\mathbf{P}_{\mathrm{L}}) + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$

where		
P⊧	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Lateral direction 	
PB	Radial load	(N)
P∟	Reverse-radial load	(N)
PT	:Lateral load	(N)
X/Y axes	: Equivalent factor (see tables 2 a	nd 3)

Table 2 Equivalent Factor of Models RSH12Z/WZ and 15Z/WZ (When radial and lateral loads are applied)

PE	Х	Y
Equivalent load in radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table 3 Equivalent Factor of Models RSH12Z/WZ and 15Z/WZ (When reverse-radial and lateral loads are applied)

P⊧	Х	Y
Equivalent load in reverse-radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

a-462

Options

Dust Prevention Accessories

따유성 offers dust prevention accessories for models RSH-Z and WZ. When a dust prevention accessory is required, specify the desired item with the corresponding symbol provided in table 4 (for details of dust prevention accessories, see page a-24). For supported model numbers for dust prevention accessories and overall LM block length with dust prevention accessories attached (dimension L), see page a-470.

Table 4 Symbols of Dust Prevention Accessories for Models RSH-Z and WZ

Symbol	Dust prevention accessory
UU	With end seal
SS	With end seal + side seal

Seal resistance value

For the maximum seal resistance value per LM block when a lubricant is applied on seals RSH-Z…UU, refer to the corresponding value provided in table 5.

Dedicated Cap C for LM Rail Mounting Holes

If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign matter, they may enter the LM block structure. Entrance of such foreign matter can be prevented by covering each LM rail mounting hole with the dedicated cap so that the top of the mounting holes is on the same level as the LM rail top face.

Since the dedicated cap C for LM rail mounting holes uses a special synthetic resin with high oil resistance and high wear resistance, it is highly durable.

When placing an order, specify the desired cap type with the corresponding cap number indicated in table 6.

For the procedure for mounting the cap, see page a-22.

Table 5 Maximum Seal Resistance Value of Seals RSH-Z, WZ…UU

	Onit. N
Model No.	Seal resistance value
RSH 7Z	0.08
RSH 9Z	0.1
RSH 12Z	0.4
RSH 15Z	0.8
RSH 7WZ	0.4
RSH 9WZ	0.8
RSH 12WZ	1.1
RSH 15WZ	1.3

Table 6 Major Dimensions of Dedicated Cap C

Model	Cap C	Bolt	Major dime	nsions mm		
No.	model No.	used	D	Н		
RSH 9WZ	C3	M3	6.3	1.2		
RSH 12Z	C3	M3	6.3	1.2		
RSH 15Z	C3	M3	6.3	1.2		

ھ

Accuracy of the Mounting Surface

Models RSH-Z and WZ use Gothic arch grooves in the ball raceways. When two rails of RSH-Z or WZ are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Section 7.3 "Permissible Error of the Mounting Surface" on page a-62.

Standard Length and Maximum Length of the LM Rail

Table 7 shows the standard lengths and the maximum lengths of models RSH-Z and WZ variations.

Table 7 Standard Length and Maximum Length of the LM Rail for Models RSH-Z and WZ Unit: mm

Model No.	RSH 7Z	RSH 9Z	RSH 12Z	RSH 15Z	RSH 7WZ	RSH 9WZ	RSH 12WZ	RSH 15WZ
Standard LM rail length (L_)	40 55 70 85 100 130	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 230 270 310 350 390 430 470 550 670 870	50 80 110 140 170 200 260 290	50 80 110 140 170 200 260 290 320	70 110 150 190 230 270 310 390 470 550	110 150 230 270 310 430 550 670 790
Standard pitch F	15	20	25	40	30	30	40	40
G	5	7.5	10	15	10	10	15	15
Max length	300	1000	1340	1430	400	1000	1430	1800

Note 1: The maximum length varies with accuracy grades. Contact \Im for details.

B ∕ød

W2 W1

4-SX (E)

NFa

Models	RSH7	to	127M
moucio	110117	ιU	122111

φd₁

	E din	xterna nensio	al ons				LM b	lock d	limens	sions					LM ra	ail dim	ensior	າຣ	Basio rat	c load ing	Static	permi	ssible n	noment	N-m*	Ma	iss
Model No.	Height	Width	Length									Greasing	Grease	Width		Height	Pitch		С	Co	N	la	N	ſв	Mc	LM block	LM rail
	М	W	L	В	С	S×ℓ	Lı	Т	К	Ν	E	d	nipple	W۱	W2	M۱	F	$d_1 \times d_2 \times h$	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
RSH 7ZM	8	17	23.4	12	8	M2×2.5	13.2	3.4	6.5	1.6	_	1.5	-	7 _002	5	4.7	15	2.4×4.2×2.3	0.88	1.37	2.93	20.7	2.93	20.7	5	0.008	0.23
RSH 9ZM	10	20	30.8	15	10	M3×2.8	19.4	4.6	7.8	2.4	-	1.6	-	9 _0.02	5.5	5.5	20	3.5×6×3.3	1.47	2.25	7.34	43	7.34	43	10.4	0.014	0.32
RSH 12ZM	13	27	35	20	15	M3×3.2	20.4	4.5	10.6	3.1	_	2	—	12 ⁰ _{-0.025}	7.5	7.5	25	3.5×6×4.5	2.65	4.02	11.4	74.9	10.1	67.7	19.2	0.028	0.58
RSH 15ZM	16	32	43	25	20	M3×3.5	26.5	5.5	12.6	2.9	3.6	_	PB107	15 ⁰ _{-0.025}	8.5	9.5	40	3.5×6×4.5	4.41	6.57	23.7	149	21.1	135	38.8	0.05	0.925

TI 🐼

W2

м

Ø

W1

Note Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistance to corrosion and environment.

Note Static permissible moment* 1 block: static permissible moment value with 1 LM block

φd1

Model RSH15ZM

2 blocks: static permissible moment value with 2 blocks closely contacting with each other

Model number coding

RSH15Z	UU N	C1	+230L	Ρ	M٠	- <u>∏</u>
2	3	4	5	6	7	8

4-S×ℓ

No. of LM blocks used on the same rail 2 Model number

2

3 Dust prevention accessory symbol (see page a-463)

4 Radial clearance symbol (see page a-35)
 5 LM rail length (in mm)
 6 Accuracy symbol (see page a-45)
 7 LM rail is made of stainless steel
 9 Symbol for No. of rails used on the same plane

Note This model number indicates that a single-rail unit constitutes one set (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum).

Model RSH15WZM

Models RSH7 to 12WZM

		E dim	xterna nensic	al ons				LM b	lock c	limens	sions					LM	rail c	dimen	sions		Basic rat	c load ing	Static	; permis	ssible n	noment	N-m*	Ма	ISS
Moo	del No.	Height	Width	Length									Greasing hole	Grease	Width			Height	Pitch		С	Co	N	/ A	N	1в	Мc	LM block	LM rail
		М	W	L	В	С	S×ℓ	Li	Т	К	Ν	E	d	nipple	W1	W2	Wз	Mı	F	$d_1 \times d_2 \times h$	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
RSH	7WZM	9	25	31.5	19	10	M3×2.5	19.7	3.4	7	1.8		1.5	_	14 _{-0.05}	5.5	_	5.2	30	3.5×6×3.2	1.37	2.16	6.54	42.1	6.54	42.1	15.4	0.018	0.51
RSH	9WZM	12	30	39	21	12	M3×2.8	27	3.9	9.1	2.3	—	1.6	_	18 _{-0.05}	6	_	7.5	30	3.5×6×4.5	2.45	3.92	16	92.9	16	92.9	36	0.03	1.08
RSH	12WZM	14	40	44.5	28	15	M3×3.6	29.3	4.5	10.6	3	_	2	_	24 _{-0.05}	8	_	8.5	40	4.5×8×4.5	4.02	6.08	24.5	138	21.7	123	59.5	0.06	1.5
RSH	15WZM	16	60	55.5	45	20	M4×4.5	39.3	5.4	12.6	3	3.6	_	PB107	42 _005	9	23	9.5	40	4.5×8×4.5	6.66	9.8	50.3	278	44.4	248	168	0.135	3

Note Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistance to corrosion and environment. Note) Static permissible moment* 1 block: static permissible moment value with 1 LM block

2 blocks: static permissible moment value with 2 blocks closely con-

tacting with each other

Model number coding

2 RSH9WZ M SS C1 +170L P M 2 3 4 5 6 7

No. of LM blocks used on the same rail 2 Model number

 Image: Second symbol (see page a-463)
 Image: Second symbol (see page a-35)

 Image: Second symbol (see page a-463)
 Image: Second symbol (see page a-45)

 Image: Second symbol (see page a-45)
 Image: Second symbol (see page a-45)

Unit: mm

9

Overall LM Block Length with Options

Overall LM Block Length (Dimension L) of Model RSR-M1 with a Dust Prevention Accessory Attached

Model No.	UU	SS
RSH 7ZM	23.4	—
RSH 9ZM	30.8	—
RSH 12ZM	35	35
RSH 15ZM	43	43
RSH 7WZM	31.5	—
RSH 9WZM	39	39
RSH 12WZM	44.5	44.5
RSH 15WZM	55.5	55.5

Note: "-" indicates not available.

Overall LM Block Length without a Seal

	Unit: mm
Model No.	Without seal
RSH 7ZM	20.4
RSH 9ZM	29.1
RSH 12ZM	32.6
RSH 15ZM	40.2
RSH 7WZM	28
RSH 9WZM	37.6
RSH 12WZM	42.1
RSH 15WZM	53.1

Miniature Cross LM Guide® Model MX

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. This model is an integral type of LM Guide that squares a unit of miniature LM Guide model RSR with another and uses two LM rails in combination. Since an orthogonal LM system with an extremely low height can be achieved with model MX alone, a conventionally required saddle is no longer necessary and the whole system can be downsized.

4-way equal load

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse-radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

Tapped LM rail type

There are two types of the LM rail: one designed to be mounted from the top with bolts, and a semi-standard type whose bottom face has tapped holes, allowing the rail to be mounted from the bottom.

Types and Features

Model MX

MX is divided into two types: RSR5M cross type and RSR7WM cross type.

Rated Loads in All Directions

Model MX is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

The basic load ratings are defined with an LM rail and an LM block, and uniform in the four directions (radial, reverse-radial and lateral directions). Their actual values are provided in the dimensional table for MX.

Equivalent Load

When the LM block of model MX receives loads in the radial, reverse-radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}} \left(\mathbf{P}_{\mathrm{L}} \right) + \mathbf{P}_{\mathrm{T}}$

whe	ere	
P⊧	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Lateral direction 	
\mathbf{P}_{R}	Radial load	(N)
P⊾	Reverse-radial load	(N)
\mathbf{P}_{T}	:Lateral load	(N)

a-474 7741K

a 475 Miniature Cross LM Guide Model MX

Options

Dust Prevention Accessory

 \mathbb{THK} offers an end seal for model MX as a dust prevention accessory.

When the end seal is required, specify the desired item with the corresponding symbol provided in table 1.

(For details of the end seal, see page a-24.)

Table 1 Symbol of Dust Prevention Accessory for Model MX

Symbol	Dust prevention accessory
UU	With end seal

Seal resistance value

For the maximum seal resistance value per LM block when a lubricant is applied on seals MX…UU, refer to the corresponding value provided in table 2.

Table 2 Maximum Seal Resistance Value of Seals MX···UU

	Unit: N
Model No.	Seal resistance value
MX 5	0.06
MX 7W	0.4

Stopper

With model MX, balls will fall off if the LM block is removed from the LM rail. To prevent the LM block from being pulled out, a stopper is mounted before shipment. If removing the stopper when using the LM Guide, be sure that the LM block will not overrun.

Table 3 Dimensional Table for Stopper (Type C) for Model MX Unit: mm

Model No.	А	В	С
MX 7W	18	6	9.2

Note: The stopper for model MX uses an O-ring.

Standard Length and Maximum Length of the LM Rail

Table 4 shows the standard lengths and the maximum lengths of model MX variations.

Table 4 Standard Length and Maximum Length of the LM Rail for Model MX Unit: mm

Model No.	MX 5	MX 7W
Standard LM rail length (L $_{\rm 0})$	40 55 70 100 130 160	50 80 110 140 170 200 260 290
Standard pitch F	15	30
G	5	10
Max length	200	400

Note 1: The maximum length varies with accuracy grades. Contact THK for details.

a-476 THK

	External dimensions			LM block dimensions			LM rail dimensions				Basic load rating		Static permissible moment* N-m	e Mass		
Model No.	Height	Width	Length			Greasing hole	Width		Height	Pitch		С	Co	NA	LM block	LM rail
	М	W	L	L2	N	d	W1	W2	M۱	F	d₁×d₂×h	kN	kN	IVIO	kg	kg/m
MX 5M	10	15.2	23.3	11.8	5.2	0.8	5 ⁰ _{-0.02}	10.1	4	15	2.4×3.5×1	0.59	1.1	2.57	0.01	0.14
MX 7WM	14.5	30.2	40.8	24.6	7.4	1.2	14 ⁰ _{-0.025}	22.1	5.2	30	3.5×6×3.2	2.04	3.21	14.7	0.051	0.51

Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistance to corrosion and environment.

4 MX7W M UU C1 +120/100L P M

Add symbol K

3 4

Y-axis LM rail length (in mm) 7Accuracy symbol (see page a-46) 1LM rail is made of stainless steel

Note) If the LM rail mount of a semi-standard model is of a tapped LM rail type, add symbol "K" after

ΠÌ.

4 Radial clearance symbol (see page a-35) 5 X-axis LM rail length (in mm)

Example:...4 MX7W M UU C1+120/100 L P K M

2 Total No. of LM blocks 2 Model number 3 Dust prevention accessory symbol (see page a-475)

Note) Static permissible moment*: Static permissible moment value with 1 LM block

For the LM rail mounting hole, a tapped LM rail type is available as semi-standard.

When mounting the LM rail of model MX7WM, take into account the thread length of the mounting bolt in order not to let the bolt end stick out of the top face of the LM rail.

Unit: mm

a-478 JUHIK

the accuracy symbol.

Model number coding

5

6 7 8

Overall LM Block Length with Options

Overall LM Block Length (Dimension L) of Model MX with a Dust **Prevention Accessory Attached**

	Unit: mm
Model No.	UU
MX 5M	23.3
MX 7WM	40.8

Overall LM Block Length without a Seal

	Unit: mm
Model No.	Without seal
MX 5M	22.3
MX 7WM	39.8

